博客

Luna和Shell GameChanger创新了新的地下传感器

Luna Innovations开发了一个新的概念,与Shell的GameChanger™早期技术计划使用Luna光纤传感解决方案测量地下岩石的原位应力。

新概念,一种连续水平的原位应力记录器(CHISL),使用LUNA的ODISI®产品来获得诱导的微骨折和钻孔变形的直接,高分辨率应变测量。然后,新的算法在钻孔处处理应变测量以估计原位的最大值和最小水平应力及其方向。

Luna和Shell Gamechanger创新了新的传感概念
图1:Chisl概念

为什么这件事?与石油和地热产品一样,依赖地下业务的企业必须具有准确的原位应力估算(在钻孔之前是现有的现有压力)。bobapp综合体育下载这影响钻井,测量和流体注入(液压压裂,水驱,CO2封存)以及现象,如故障再激活和诱导的地震性。

行业的想法是什么?“可靠的压力估计对于石油和天然气行业的许多应用至关重要。例如,液压压裂的成功强烈取决于所产生的骨折高度,这又通过深度的应力变化强烈控制。Luna的技术将允许具有前所未有的解决方案,与水力压裂过程非常相关的压力深度配置文件,“壳牌的地质力学主题专家Alexei Savitski评论说:“今天没有访问这些关键信息。最大水平应力是最不确定的地下特性之一。它从其他数据推断出来。但CHISL将允许显着降低这种不确定性,这对于评估故障重新激活和诱导地震性的风险至关重要。

“使用Luna在这项技术上非常适合GameChanger授权,”Gamechanger赞助此项目的Haiyong Cai解释说。“该计划支持LUNA来嘲笑这种新型压力测量技术的早期发展,以证明概念水平。它还与Shell提出使用案例准确,可靠的应力测量可能会大大改善底线。“

是什么让Luna的Chisl传感器独特?它将光纤传感器集成到柔性液压套筒中,该液压套筒将压力施加到钻孔壁上,直到形成小的纵向骨折。与液压压裂不同,其中流体流入裂缝并导致它们远离钻孔的长度,ChISL不允许流体流入诱导的骨折。CHISL传感器将提供新型数据,可用于提高安全,生产效率和未来地下工程系统的优化。使用粗糙化传感器的未来现场操作可以为前所未有的钻孔长度提供测量,而不是传统的液压压裂技术的时间较少。除了岩层的应力分析外,还为液压压裂规划,其他应用包括石油井的完整性感测,以及复杂油井的优化钻孔。

解释CHISL传感技术(专利申请中)

以螺旋模式嵌入HD-FOS传感纤维允许精确地测量径向和轴向应变,因为套筒内的液压增加。孔周围的应变的连续测量孔的深度提供了以前不可用的新型数据,例如实时骨折启动和演变。测量原位应力的方法如图2所示。

Luna Shell Gamechanger Chisl方法
图2:CHISL传感器的方法

分布式光纤套筒概念的方法

  1. 将传感器放置在所需深度处无填充。这允许足够的间隙将其定位在钻孔内。
  2. 将传感器套管加压,直到它径向扩展以符合钻孔壁的轮廓和界面。此处获取应变测量,并成为将比较在更高压力下进行的基线签名。基线测量还可以提供有关钻孔形状的变化的信息,而预先存在的骨折的存在。水平骨折将显示为沿着螺旋传感器路径的应变测量中的单一峰值。
  3. 增加传感器内的液压以产生岩壁的弹性变形,因此可以进行弹性模量的测量。该测量可以作为深度的函数以及由局部应变轮廓识别的钻孔壁的函数识别模量(由于变化的材料)的变化。
  4. 将液压增加到第一裂缝发生的点。在理论上,这种骨折的方向应垂直于最小水平应力,SH。由于套筒中的纤维的螺旋结构,所测量的应变将表现出周期性峰的图案;它会在多个绕组上与骨折相交。假设传感器的方向是已知的,第一峰值从传感器原点的距离指示第一裂缝发生的角度取向。骨折骨折的轴向长度可以从观察到的峰的数量和它们的相对距离下纤维来确定。与传统压裂技术相比,这是额外的好处是在加压过程中立即观察到裂缝,而不是使用印模包装机或视觉后工艺。
  5. 提高压力直至发生第二裂缝,这与最大水平应力有关H。该二次裂缝的相对时钟方向可以根据第一系列峰和新系列峰之间的相位计算。测量技术可以容纳额外的意外骨折或非垂直骨折方向,因为高分辨率应变数据将解决这些特征。断裂幅度和角度取向的变化对应于原位应力,可以沿着钻孔的深度改变,并且所提出的技术将允许以高分辨率观察到那些变化。从该技术计算的所得到的应力与深度将被绘制如图1所示。

在单个位置执行完整测量后,传感器套筒中的压力降低。裂缝将关闭,并且套筒可以自由地定位在下一个位置。在此过程中,所有液压流体仍然包含在传感器内。因为没有液体损失并且传感器套筒的外径可以小于66毫米,因此预计执行测量所需的所有设备将适合在公用事业车上(液压泵,传感器/电缆阀芯,流体,仪器电子和计算机储存器)。

Luna Shell GamechangerChisl测试原型
图3:该领域的CHISL Prototype测试

Chisl概念证明实验

在局部石灰石采石场钻出一个浅的HQ钻孔,以证明CHISL原型的骨折感测能力(图3)。使用核心样品的巴西圆盘测试测定岩石的拉伸强度为3,100psi。

在CHISL操作之前和之后使用印模包装物,以验证骨折状态预先测试。在这里描述的测量中,预先存在的水平骨折是在测试前记录的唯一印象。

随着CHISL组件膨胀,在钻孔壁的应变图中可见相同的水平骨折,如图4所示。图的X轴沿着孔的深度,而Y轴是圆柱形CHISL传感器的圆周周围的极角。颜色图表示在嵌入式光纤传感器内的每个位置观察到应变电平。

Luna Shell游戏更换器预先存在裂缝应变测量
图4:观察预先存在的水平骨折。

进一步加压CHISL传感器,双翼骨折出现在水平骨折以下和高于水平骨折以下,但在不同的角度和施加到钻孔壁上的不同压力下,如图5所示。

Luna Shell Gamechanger最小压力骨折
图5:在水平骨折两侧发生的不同压力和取向发生最小应力骨折。

该图中的颜色图表示相对于压力增加的应变的导数,并且有助于识别随着压力升高的压力快速生长的应变位置。水平分隔下方的裂缝发生在90°和270°处,在2,500psi的较低压力下发生,而水平分区上方的形成在3,700psi的压力下在180°和330°处破裂。这证明了分布式感测概念的力量。在1M传感区域内有足够的空间分辨率来检测各个裂缝开口,它们的长度和沿着孔的深度的应力取向的变化,甚至同时测量两个不同的形成。

用CHISL传感器进一步加压钻孔,直至在4,900psi下发生双重断裂,如图6所示。在270°处的新骨折在源自较低压力下的双翼骨折之间大约90°。还观察到,330°的断裂减少,而0°的新骨折开口。据理论,这种新的骨折与岩层中的最大原位应力有关。

Luna ShellgameChanger双重骨折
图6:高清光纤传感器观察的双重骨折。

将这些本地测量与远场压力状态相关联是下一个关键步骤,Luna的合作伙伴团队开发了一种从高清光纤传感器数据计算远场应力状态的算法。通过这种空间分辨率和实时性的这些断裂演变是前所未有的。

该实验证明了CHISL传感器具有创造,测量和可视化对应于最小和最大水平应力的裂缝的可能性。部署时,该技术将以无与伦比的一致性和深度分辨率提供关键测量,允许更安全,更高效的操作。

Shell Gamechanger™程序与公司合作,通过各种公司进行高影响力能源技术。超过20年,它有助于许多启动,以获得他们需要成长的资金和专家支持。近年来,GameChanger™在战略上专注于技术开发,加快壳牌的能源转型努力,包括与各种孵化器,学术机构和国家实验室形成战略联盟。

阅读新闻发布在CHISL传感器或联系Luna.欲获得更多信息。